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Abstract. The Tikhonov-Phillips method is widely used for regularizing ill-posed
inverse problems mainly due to the simplicity of its formulation as an optimization
problem. The use of different penalizers in the functionals associated to the
corresponding optimization problems has originated a variety other methods which
can be considered as “variants” of the traditional Tikhonov-Phillips method of order
zero. Such is the case for instance of the Tikhonov-Phillips method of order one, the
total variation regularization method, etc. In this article we find sufficient conditions on
the penalizers in generalized Tikhonov-Phillips functionals which guarantee existence
and uniqueness and stability of the minimizers. The particular cases in which the
penalizers are given by the bounded variation norm, by powers of seminorms and by
linear combinations of powers of seminorms associated to closed operators, are studied.
Several examples are presented and a few results on image restoration are shown.
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1. Introduction

In a quite general framework an inverse problem can be formulated as the need for

determining x in an equation of the form

Tx = y, (1)

where T is a linear bounded operator between two infinite dimensional Hilbert spaces

X and Y (in general these will be function spaces), the range of T , R(T ), is non-closed

and y is the data, supposed to be known, perhaps with a certain degree of error. It

is well known that under these hypotheses, problem (1) is ill-posed in the sense of

Hadamard ([11]). In this case the ill-posedness is a result of the unboundedness of T †,
the Moore-Penrose generalized inverse of T . The Moore-Penrose generalized inverse is

a fundamental tool in the treatment of inverse ill-posed problems and their regularized

solutions, mainly due to the fact that this operator is strongly related to the least-

squares solutions of problem (1). In fact, the least-squares solution of minimum norm

of problem (1), also known as the best approximate solution, is x† .
= T †y, which exists

if and only if y ∈ D(T †) = R(T ) ⊕ R(T )⊥. Moreover, for y ∈ D(T †), the set of all

least-squares solutions of problem (1) is given by x† +N (T ), where N (T ) denotes the

null space of the operator T .

The unboundedness of T † has as undesired consequence the fact that small

errors or noise in the data y can result in arbitrarily large errors in the

corresponding approximated solutions (see [18], [17]), turning unstable all standard

numerical approximation methods, making them unsuitable for most applications and

inappropriate from any practical point of view. The so called “regularization methods”

are mathematical tools designed to restore stability to the inversion process and consist

essentially of parametric families of continuous linear operators approximating T †. The

mathematical theory of regularization methods is very wide (a comprehensive treatise

on the subject can be found in the book by Engl, Hanke and Neubauer, [9]) and it is of

great interest in a broad variety of applications in many areas such as Medicine, Physics,

Geology, Geophysics, Biology, image restaurarion and processing, etc.

There exist numerous ways of regularizing an ill-posed inverse problem. Among

the most standard and traditional methods we mention the Tikhonov-Phillips method

([15], [19], [20]), truncated singular value decomposition (TSVD), Showalter’s method,

total variation regularization ([1]), etc. Among all regularization methods, probably the

best known and most commonly and widely used is the Tikhonov-Phillips regularization

method, which was originally proposed by Tikhonov and Phillips in 1962 and 1963 (see

[15], [19], [20]). Although this method can be formalized within a very general framework

by means of spectral theory ([9], [7]), the widespread of its use is undoubtedly due to

the fact that it can also be formulated in a very simple way as an optimization problem.

In fact, the regularized solution of problem (1) obtained by applying Tikhonov-Phillips

method is the minimizer xα of the functional

Jα(x)
.
= ‖Tx− y‖2 + α ‖x‖2 , (2)
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where α is a positive constant known as the regularization parameter.

The penalizing term α ‖x‖2 in (2) not only induces stability but it also determines

certain regularity properties of the approximating regularized solutions xα and of the

corresponding least-squares solution which they approximate as α → 0+. Thus,

for instance, it is well known that minimizers of (2) are always “smooth” and, for

α → 0+, they approximate the least-squares solution of minimum norm of (1),

that is limα→0+ xα = T †y. This method is more precisely known as the Tikhonov-

Phillips method of order zero. Choosing other penalizing terms gives rise to different

approximations with different properties, approximating different least-squares solutions

of (1). Thus, for instance, the use of ‖5x‖2 as penalizer instead of ‖x‖2 in (2) originates

the so called Tikhonov-Phillips method of order one, the penalizer ‖x‖
BV

(where ‖·‖
BV

denotes the bounded variation norm) gives rise to the so called bounded variation

regularization method introduced by Acar and Vogel in 1994 ([1]), etc. In particular, in

the latter case, the approximating solutions are only forced to be of bounded variation

rather than smooth and they approximate, for α → 0+, the least-squares solution of

problem (1) of minimum ‖·‖
BV

-norm (see [1]). This method has been proved to be a

good choice, for instance, in certain image restoration problems in which it is highly

desirable to detect and preserve sharp edges and discontinuities of the original image.

Hence, the penalizing term in (2) is used not only to stabilize the inversion of

the ill-posed problem but also to enforce certain characteristics on the approximating

solutions and on the particular limiting least-squares solution that they approximate.

As a consequence, it is reasonable to assume that an adequate choice of the penalizing

term, based on a-priori knowledge about certain characteristics of the exact solution of

problem (1), will lead to approximated “regularized” solutions which will appropriately

reflect those characteristics.

With the above considerations in mind, we shall consider functionals of the form

JW,α(x)
.
= ‖Tx− y‖2 + αW (x) x ∈ D, (3)

where W (·) is an arbitrary functional with domain D ⊂ X and α is a positive constant.

The purpose of this article is to find sufficient conditions on the penalizers in

generalized Tikhonov-Phillips functionals of the form (3) which guarantee existence

and uniqueness and stability of the minimizers. The particular cases in which the

penalizers are given by the bounded variation norm, by powers of seminorms and by

linear combinations of powers of seminorms associated to closed operators, are studied.

Several examples are presented and a few results on image restoration are shown.

2. Existence and uniqueness for general penalizing terms

In this section we shall consider the problem of finding conditions on the penalizer W (·)
which guarantee existence and uniqueness of global minimizers of (3). Previously we

will need to introduce a few definitions.
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Definition 2.1. Let X be a vector space, W a functional defined over a set D ⊂ X and

A a subset of D. We say that A is W -bounded if there exists a constant k < ∞ such

that |W (a)| ≤ k for every a ∈ A.

Definition 2.2. (W -coercivity) Let X be a vector space and W , F two functionals

defined on a set D ⊂ X . We say that the functional F is W -coercive if lim
n→∞

F (xn) = +∞
for every sequence {xn} ⊂ D for which limn→∞ W (xn) = +∞.

Remark 2.3. Note that if the functional F is W -coercive and W is bounded from below,

then all lower level sets for F , i.e. all sets of the form {x ∈ D : F (x) ≤ a} with a ∈ IR

are W -bounded sets.

Definition 2.4. Let X be a normed vector space, W , F two functionals with Dom(F ) ⊂
Dom(W ) ⊂ X . We say that F is W -subsequentially (weakly) lower semicontinuous if

for every W -bounded sequence {xn} ⊂ Dom(F ) such that xn
(w)→ x ∈ Dom(F ), there

exists a subsequence {xnj
} ⊂ {xn} such that F (x) ≤ lim infj→∞ F (xnj

). If F is W -

subsequentially lower semicontinuous we will simply say that F is W -sls. Similarly, if

F is W -subsequentially weakly lower semicontinuous we will say that F is W -swls.

In the following theorem, sufficient conditions on the operator T and on the

functional W guaranteeing the existence and uniqueness of the minimizer of the

functional (3) are established.

Theorem 2.5. (Existence and uniqueness) Let X , Y be normed vector spaces, T ∈
L(X ,Y), y ∈ Y , D ⊂ X a convex set and W : D −→ R a functional bounded from

below, W -subsequentially weakly lower semicontinuous, and such that W -bounded sets

are relatively weakly compact in X . More precisely, suppose that W satisfies the following

hypotheses:

• (H1): ∃ γ ≥ 0 such that W (x) ≥ −γ ∀x ∈ D.

• (H2): for every W -bounded sequence {xn} ⊂ D such that xn
w→ x ∈ D, there exists

a subsequence {xnj
} ⊂ {xn} such that W (x) ≤ lim infj→∞ W (xnj

).

• (H3): for every W -bounded sequence {xn} ⊂ D there exist a subsequence {xnj
} ⊂

{xn} and x ∈ D such that xnj

w→ x.

Then the functional JW,α(·) in (3) has a global minimizer. If moreover W is convex and

T is injective or W is strictly convex, then such a minimizer is unique.

Proof. First we note that for every sequence {zn} ⊂ D we have that

zn
w−→ z =⇒ ‖Tz − y‖2 ≤ lim inf

n→∞
‖Tzn − y‖2 . (4)

This follows immediately from the continuity of T and the weak lower semicontinuity

of the norm.

Let now {xn} ⊂ D be such that

JW,α(xn) → inf
x∈D

JW,α(x)
.
= Jmin. (5)
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Hypothesis (H1) guarantees that −∞ < Jmin < +∞. From the definition of JW,α(·)
and since α > 0 it follows that JW,α(·) is W -coercive. Suppose now that the sequence

{xn} is not W -bounded. Then, there exists a subsequence {xnj
} ⊂ {xn} such that

W (xnj
) → ∞, from which, by virtue of the W -coercivity of JW,α(·) it follows that

JW,α(xnj
) → ∞. This contradicts (5). Thus the sequence {xn} is W -bounded. It then

follows by hypothesis (H3) that there must exist a sequence {xnj
} ⊂ {xn} and x̄ ∈ D

such that xnj

w→ x̄ and since W satisfies (H2) there exists a subsequence {xnjk
} of {xnj

}
such that

W (x̄) ≤ lim inf
k→∞

W (xnjk
). (6)

Then

JW,α(x̄) = ‖T x̄− y‖2 + αW (x̄)

≤ lim inf
k→∞

∥∥∥Txnjk
− y

∥∥∥
2

+ α lim inf
k→∞

W (xnjk
) (by (4) and (6))

≤ lim inf
k→∞

(∥∥∥Txnjk
− y

∥∥∥
2

+ αW (xnjk
)

)
(by prop. of liminf)

= lim inf
k→∞

JW,α(xnjk
) (by def. of JW,α)

= lim
n→∞

JW,α(xn) (by (5) and since {xnjk
} is a subseq. of {xn})

= Jmin.

It then follows that JW,α(x̄) = Jmin. This proves the existence of a global minimizer of

(3). For the uniqueness, note that under the hypothesis that W be convex and T be

injective or W be strictly convex, one has that the functional JW,α(·) is strictly convex

and therefore the global minimizer is unique. ¥

Remark 2.6. Note that in the previous theorem the convexity of D is not needed for

the existence. Note also that if we replace hypotheses (H2) and (H3) on the functional

W by the assumptions that W be W -sls and that W -bounded sets be relatively compact

in X , i.e. by the following hypotheses:

• (H2’): for every W -bounded sequence {xn} ⊂ D such that xn → x ∈ D, there exists

a subsequence {xnj
} ⊂ {xn} such that W (x) ≤ lim infj→∞ W (xnj

);

• (H3’): for every W -bounded sequence {xn} ⊂ D there exist a subsequence {xnj
} ⊂

{xn} and x ∈ D such that xnj
→ x,

then both existence and uniqueness remain valid.

Remark 2.7. Note that hypothesis (H3’) is stronger than (H3) which, in turn, is

stronger than the hypothesis that every W -bounded set be weakly precompact. Also,

(H2’) is weaker than (H2) which in turn is weaker than the hypothesis that W be weakly

lower semicontinuous.
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Remark 2.8. If X is a reflexive Banach space and W (·) is a norm defined on a subspace

D of X , which is on D equivalent or stronger that the norm of X, then it follows that

W satisfies hypothesis (H1), (H2), (H3) and therefore the functional (3) has a global

minimizer on D. If moreover T is injective or the normed space (D,W (·) ) is complete

and separable or Hilbert, then such a minimizer is unique.

Observe that hypothesis (H1), (H2) and (H3) as well as (H2’) and (H3’) impose

conditions only on the penalizer W (·) and not on T , so that the corresponding existence

and uniqueness results hold for any bounded linear operator T . It is therefore not

surprising that those conditions can be relaxed if some information on T in connection

to W (·) is provided. The next theorem shows a result in this direction.

Theorem 2.9. Let X , Y be normed spaces, T ∈ L(X ,Y), D ⊂ X a convex set and W

a real functional on D. Consider the following standing hypotheses:

• (I2): W is T -W -swls, i.e for every sequence {xn} ⊂ D such that {‖Txn‖+W (xn)}
is bounded in R (in the sequel we shall refer to such a sequence as a “T -W bounded

sequence”) and xn
w→ x ∈ D, there exists a subsequence {xnj

} ⊂ {xn} such that

W (x) ≤ lim infj→∞ W (xnj
).

• (I3): T -W -bounded sets are relatively weakly compact in X , i.e., for every T -W -

bounded sequence {xn} ⊂ D there exist a subsequence {xnj
} ⊂ {xn} and x ∈ D

such that xnj

w→ x.

If T and W (·) satisfy the hypotheses (H1), (I2) and (I3), then the functional JW,α(·) in

(3) has a global minimizer. If moreover W is convex and T is injective or W is strictly

convex, then such a minimizer is unique.

Proof. Let {xn} be a minimizing sequence of JW,α(·). From the definition of JW,α(·) it

follows that {xn} is T -W -bounded. Then by (I3) there must exist {xnj
} ⊂ {xn} and

x̄ ∈ D such that xnj

w→ x̄. Now by virtue of (I2) there exists {xnjk
} ⊂ {xnj

} such

that W (x̄) ≤ lim infk→∞ W (xnjk
). Following now the same steps as in Theorem 2.5 we

obtain that

JW,α(x̄) = min
x∈D

JW,α(x).

If W is convex and T is injective or W (·) is strictly convex, uniqueness follows from the

strict convexity of JW,α(·) on D. ¥

Remark 2.10. Note that hypotheses (I2) and (I3) are weaker that (H2) and (H3),

respectively. Also note that both (I2) and (I3) hold, for instance if X is reflexive, W (·)
is subsequentially weakly lower semicontinuous and T and W are complemented, i.e.

there exists a positive constant c such that ‖Tx‖2 + W (x) ≥ c ‖x‖2 ∀x ∈ D.

Remark 2.11. Just like in Theorem 2.5, in Theorem 2.9, the convexity of D is not

needed for the existence. Also note that if hypothesis (I2) and (I3) are replaced by the

assumption that W be T -W -sls and that T -W -bounded sets be relatively compact in X ,

i.e. by the hypoteses:
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• (I2’): for every T -W -bounded sequence {xn} ⊂ D such that xn → x ∈ D, there

exists a subsequence {xnj
} ⊂ {xn} such that W (x) ≤ lim infj→∞ W (xnj

);

• (I3’): for every T -W -bounded sequence {xn} ⊂ D there exist a subsequence

{xnj
} ⊂ {xn} and x ∈ D such that xnj

→ x,

then the results of Theorem 2.9 remain valid.

3. Stability

As it was previously mentioned, inverse ill-posed problems appear in a wide variety

of applications in diverse areas. Solving these problems usually involves several steps

starting from modeling, through measurements and data acquisition for the experiment

under study, to the discretization of the mathematical model and the derivation of

numerical approximations for the regularized solutions. All these steps entail intrinsic

errors, many of which are unavoidable. For this reason, in the context of the study

of inverse ill-posed problems from the optic of Tikhonov-Phillips methods with general

penalizing terms, it is of particular interest to analyze the stability of the minimizers of

the functional (3) under different types of perturbations. To proceed with some results

in this direction we shall need the following definitions.

Definition 3.1. (W -coercivity) Let X be a vector space, W, Fn, n = 1, 2, . . ., functionals

defined on a set D ⊂ X . We will say that the sequence {Fn} is W -coercive if

limn→∞ Fn(xn) = +∞ for every sequence {xn} ⊂ D for which limn→∞ W (xn) = +∞.

Definition 3.2. (consistency) Let X be a vector space and W,F, Fn, n = 1, 2, ...,

functionals defined on a set D ⊂ X . We will say that the sequence {Fn} is consistent

for F if Fnx → Fx for every x ∈ D. We will say that the sequence {Fn} is W -uniformly

consistent for F if Fnx → Fx uniformly on every W -bounded set, that is if for any given

c > 0 and ε > 0, there exists N = N(c, ε) such that |Fn(x)−F (x)| < ε for every n ≥ N

and every x ∈ D such that |W (x)| ≤ c.

In the following theorem we present a weak stability result for the minimizers of a

general functional on a normed space.

Theorem 3.3. Let X be a normed vector space, D a subset of X , W : D −→ R a

functional satisfying the hypotheses (H1) and (H3) of Theorem 2.5 (i.e. there exists

γ > 0 such that W (x) ≥ −γ for every x ∈ D and every W -bounded sequence contains

a weakly convergent subsequence with limit in D), J, Jn, n = 1, 2, . . . , functionals on

D such that J is W -swls and {Jn} is W -coercive and W -uniformly consistent for J .

Assume further that there exists a unique global minimizer x̄ ∈ D of J and that each

functional Jn also possesses on D a global minimizer xn (not necessarily unique). Then

xn
w→ x̄.
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Proof. Since for each n ∈ N, xn minimizes the functional Jn we have that Jn(xn) ≤
Jn(x̄). Then

lim sup
n→∞

Jn(xn) ≤ lim sup
n→∞

Jn(x̄) = J(x̄) < ∞, (7)

where the equality follows from the hypothesis that the sequence {Jn} is W -uniformly

consistent for J . From (7), the hypothesis (H1) on W and the hypothesis of W -

coercitivity of {Jn} it then follows that the sequence {xn} is W -bounded.

Suppose now that the sequence {xn} does not converge weakly to x̄. Then there

exists a subsequence {xnj
} of {xn} such that no subsequence {xnjk

} of
{
xnj

}
converges

weakly to x̄. On the other hand, since the sequence
{
xnj

}
is W -bounded (since the

original sequence is) hypothesis (H3 ) on W implies that there exist x∗ ∈ D and a

subsequence
{

xnjk

}
of

{
xnj

}
such that xnjk

w→ x∗. It then follows that x∗ 6= x̄.

On the other hand, since the sequence {xnjk
} is W -bounded, xnjk

w→ x∗ and J is

W -swls, it follows that there exists a subsequence {xnjk`
} ⊂ {xnjk

} such that

J(x∗) ≤ lim inf
`→∞

J
(
xnjk`

)
. (8)

Also, since the sequence {xnjk`
} is W -bounded and {Jn} is W -uniformly consistent for

J , it follows that

lim
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
= 0. (9)

Hence

J(x∗) ≤ lim inf
`→∞

J
(
xnjk`

)
(by (8))

≤ lim sup
`→∞

J
(
xnjk`

)

= lim sup
`→∞

[(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ Jnjk`

(
xnjk`

)]

≤ lim sup
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ lim sup

`→∞
Jnjk`

(
xnjk`

)

= lim
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ lim sup

`→∞
Jnjk`

(
xnjk`

)
(by (9))

= lim sup
`→∞

Jnjk`

(
xnjk`

)
(by (9))

≤ J(x̄). (by (7), since {xnjk`
} ⊂ {xn})

Since x̄ is the unique minimizer of J it follows that x∗ = x̄, contradicting our previous

result that x∗ 6= x̄. This contradiction came from assuming that the sequence {xn} did

not converge weakly to x̄. Hence xn
w→ x̄ as we wanted to show. ¥

Note that by virtue of Remark 2.7, the hypothesis that J be W -swls in the previous

theorem can be replaced by the hypothesis that J be weakly lower semicontinuous on

D.
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In the particular case in which the functionals J and Jn are of Tikhonov-Phillips

type, under certain general conditions on the penalizer W (·), the previous theorem

yields a weak stability result for the minimizers of the functional (3). In fact we have

the following corollary.

Corollary 3.4. Let X be a normed vector space, Y an inner product space, T, Tn ∈
L(X ,Y), n = 1, 2, · · ·, y ∈ Y, α > 0, D a subset of X , W : D → R a functional satisfying

hypotheses (H1), (H2) and (H3) of Theorem 2.5, J, Jn, n = 1, 2, ..., functionals on D
defined as follows:

J(x)
.
= ‖Tx− y‖2 + αW (x), (10)

Jn(x)
.
= ‖Tnx− yn‖2 + αnW (x), (11)

such that as n → ∞, αn → α, yn → y and Tnx → Tx uniformly for x in W -bounded

sets (i.e. {Tn} is W -uniformly consistent for T ). Suppose further that J has a unique

global minimizer x̄. If xn is a global minimizer of Jn then xn
w→ x̄.

Proof. To prove this corollary it suffices to verify that the functionals J and Jn satisfy

the hypotheses of Theorem 3.3, that is, verify that J is W -swls and that the sequence

{Jn} is W -coercive and W -uniformly consistent for J .

To prove that J is W -swls, let {xn} ⊂ D be a W -bounded sequence such that

xn
w−→ x ∈ D. From the continuity of T and the weak lower semicontinuity of every

norm, it follow immediately that

‖Tx− y‖2 ≤ lim inf
n→∞

‖Txn − y‖2. (12)

On the other hand, by (H2) it follows that there exists a subsequence {xnj
} ⊂ {xn}

such that

W (x) ≤ lim inf
j→∞

W (xnj
). (13)

Then,

J(x) = ‖Tx− y‖2 + αW (x)

≤ lim inf
j→∞

‖Txnj
− y‖2 + lim inf

j→∞
αW (xnj

)(by (12) y (13))

≤ lim inf
j→∞

{‖Txnj
− y‖2 + αW (xnj

)} (by property of lim inf)

= lim inf
j→∞

J(xnj
).

Hence J is W -swls.

Now we will prove that the sequence {Jn} is W -coercive. For that let {xn} ⊂ D
such that W (xn) → +∞. Observe that

Jn(xn) = ‖Tnxn − yn‖2 + αnW (xn) ≥ αnW (xn). (14)

Since W satisfies (H1) and αn → α > 0, it follows immediately from (14) that

Jn(xn) → +∞. Hence {Jn} is uniformly W -coercive.
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Finally we will show that {Jn} is W -uniformly consistent for J . For that let M ⊂ D
be a W -bounded set. Since {Tn} is W -uniformly consistent for T we have that Tnx → Tx

uniformly on M and since yn → y, it follows that ‖Tnx− yn‖2 → ‖Tx− y‖2 uniformly

on M . Finally, since

|Jn(x)− J(x)| = | ‖Tnx− yn‖2 + αnW (x)− ‖Tx− y‖2 − αW (x)|
≤ | ‖Tnx− yn‖2 − ‖Tx− y‖2|+ |(αn − α)| |W (x)|, (15)

it follows that Jn(x) → J(x) uniformly for x ∈ M . Thus {Jn} is W -uniformly consistent

for J .

Since J and {Jn} satisfy the hypotheses of Theorem 3.3, the corollary then

follows. ¥

Remark 3.5. Note that by virtue of Remark 2.8, the weak stability result of Corollary

3.4 holds if i) X is a reflexive Banach space, ii) the penalizer W (·) in (10) is a norm

defined on a subspace D of X which is on D equivalent or stronger than the original

norm in X and iii) T is injective or the space (D,W (·) ) is a separable Banach space or

a Hilbert space.

Hypotheses on Theorem 3.3 and Corollary 3.4 can be weakened if adequate

information on the operator T is available. Before we proceed to the statements of

the corresponding results, we shall need the following definitions.

Definition 3.6. (T -W -coercivity) Let X , Y be vector spaces, T ∈ L(X ,Y), W,

Fn, n = 1, 2, . . . , functionals defined on a set D ⊂ X . We will say that the sequence

{Fn} is T -W -coercive if limn→∞ Fn(xn) = +∞ for every sequence {xn} ⊂ D for which

limn→∞ ‖Txn‖+ W (xn) = +∞.

Definition 3.7. (T -W -uniform consistency) Let X , Y be vector spaces, T ∈ L(X ,Y)

and W,F, Fn, n = 1, 2, ..., functionals defined on a set D ⊂ X . We will say that the

sequence {Fn} is T -W -uniformly consistent for F if Fn → F uniformly on every T -W -

bounded set, that is if for any given c > 0 and ε > 0, there exists N = N(c, ε) such that

|Fn(x)− F (x)| < ε for every n ≥ N and every x ∈ D such that ‖Tx‖+ |W (x)| ≤ c.

Theorem 3.8. Let X , Y be normed vector spaces, T ∈ L(X ,Y), D a subset of X ,

W : D −→ R a functional satisfying hypotheses (H1) of Theorem 2.5 and (I3) of

Theorem 2.9 (i.e. there exists γ > 0 such that W (x) ≥ −γ for every x ∈ D and

every T -W -bounded sequence contains a weakly convergent subsequence with limit in

D), J, Jn, n = 1, 2, . . . , functionals on D such that J is T -W -swls and {Jn} is T -W -

coercive and T -W -uniformly consistent for J . Assume further that there exists a unique

global minimizer x̄ ∈ D of J and that each functional Jn also possesses on D a global

minimizer xn (not necessarily unique). Then xn
w→ x̄.

Proof. The proof follows like in Theorem 3.3 with the obvious modifications. ¥
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Corollary 3.9. Let X be normed vector space, Y an inner product space, T, Tn ∈
L(X ,Y), n = 1, 2, · · ·, y ∈ Y, α > 0, D a subset of X , W : D → R a functional satisfying

hypotheses (H1) of Theorem 2.5 and (I2) and (I3) of Theorem 2.9, J, Jn, n = 1, 2, ...,

functionals on D defined as follows:

J(x)
.
= ‖Tx− y‖2 + αW (x),

Jn(x)
.
= ‖Tnx− yn‖2 + αnW (x),

such that as n → ∞, αn → α, yn → y and Tnx → Tx uniformly for x in W -bounded

sets (i.e. {Tn} is W -uniformly consistent for T ). Suppose further that J has a unique

global minimizer x̄. If xn is a global minimizer of Jn then xn
w→ x̄.

Proof. We will show that J and {Jn} satisfy the hypotheses of Theorem 3.8. For

that it suffices to show that J is T -W -swls and that {Jn} is T -W coercive and T -

W -uniformly consistent for J . That J is T -W -swls follows immediately from (I2) and

the weak lower semicontinuity of every norm. The T -W -uniform consistency of {Jn}
for J follows exactly as in the proof of Corollary 3.4 by noting that |Jn(x) − J(x)| ≤
| ‖Tnx − yn‖2 − ‖Tx − y‖2| + |(αn − α)| |W (x)| and using the fact that T -W -bounded

sets are also W -bounded. Finally, the T -W -coercivity of {Jn} follows easily from the

W -uniform consistency of {Tn} for T . ¥

Next we present a strong stability result for the minimizers of general functionals

on a normed space.

Theorem 3.10. Let X be a normed vector space, D a subset of X , W : D −→ R a

functional satisfying hypotheses (H1) of Theorem 2.5 and (H3’) of Remark 2.6 (i.e.,

there exists γ > 0 such that W (x) ≥ −γ for every x ∈ D and every W -bounded sequence

contains a convergent subsequence with limit in D), J, Jn, n = 1, 2, . . . , functionals

on D such that J is W -subsequentially lower semicontinuous (W -sls) and {Jn} is W -

coercive and W -uniformly consistent for J . Suppose further that J has a unique global

minimizer x̄ ∈ D and that each functional Jn also possesses on D a global minimizer xn

(not necessarily unique). Then xn → x̄.

Proof. For each n ∈ N, let xn be a global minimizer of Jn. Following the same steps as

those in the proof of Theorem 3.3 it follows that the sequence {xn} is W -bounded.

Suppose now that {xn} does not converge to x̄. Then there exists a subsequence

{xnj
} of {xn} such that no subsequence of

{
xnj

}
converges to x̄. On the other hand,

since the sequence
{
xnj

}
is W -bounded (since the original sequence is), hypothesis (H3’ )

on the functional W implies that there exist a subsequence
{

xnjk

}
of

{
xnj

}
and x∗ ∈ D

such that xnjk
→ x∗. From this it follows that x∗ 6= x̄ and since J is W -sls, there exists

a subsequence
{

xnjk`

}
⊂

{
xnjk

}
such that

J(x∗) ≤ lim inf
`→∞

J
(
xnjk`

)
. (16)
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Then

J(x∗) ≤ lim inf
`→∞

J
(
xnjk`

)
(by (16))

≤ lim sup
`→∞

[(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ Jnjk`

(
xnjk`

)]

≤ lim sup
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ lim sup

`→∞
Jnjk`

(
xnjk`

)

= lim sup
`→∞

Jnjk`

(
xnjk`

)
(since {Jn} is W -unif. consistent for J)

≤ lim sup
n→∞

Jn (xn) (since {xnjk`
} ⊂ {xn})

≤ lim sup
n→∞

Jn (x̄) (since xn minimizes Jn)

= J(x̄). (since {Jn} is W -unif. consistent for J)

Hence J(x∗) ≤ J(x̄) which contradicts the fact that x̄ 6= x∗ and x∗ is the unique

minimizer of J . This contradiction came from assuming that the sequence {xn} does

not converge to x̄. Hence xn → x̄. ¥

The previous theorem yields a strong stability result for minimizers of the functional

(3) in the particular case in which J and Jn are of Tikhonov-Phillips type. More precisely

we have the following corollary.

Corollary 3.11. Let X be a normed vector space, Y an inner product space, T, Tn ∈
L(X ,Y), n = 1, 2, · · ·, y ∈ Y, α > 0, D a subset of X , W : D → R a functional satisfying

hypotheses (H1) of Theorem 2.5 and (H2’) and (H3’) of Remark 2.6, J, Jn, n = 1, 2, ...,

functionals on D defined as follows:

J(x)
.
= ‖Tx− y‖2 + αW (x), (17)

Jn(x)
.
= ‖Tnx− yn‖2 + αnW (x), (18)

such that as n → ∞, αn → α, yn → y and Tnx → Tx uniformly on W -bounded sets

(i.e. {Tn} is W -uniformly consistent for T ). Suppose further that J has a unique global

minimizer x̄. If xn is a global minimizer of Jn then xn → x̄.

Proof. Since the proof is immediately obtained from Theorem 3.10 following the same

steps as in Corollary 3.4, we do not give details here. ¥

Here again, the strong stability results of Theorem 3.10 and Corollary 3.11 remain

valid under weaker hypotheses involving both the model operator T and the penalizer

W .

Theorem 3.12. Let X be a normed vector space, D a subset of X , W : D −→ R
a functional satisfying hypotheses (H1) of Theorem 2.5 and (I3’) of Remark 2.11

(i.e., there exists γ > 0 such that W (x) ≥ −γ for every x ∈ D and every T -W -

bounded sequence contains a convergent subsequence with limit in D), J, Jn, n = 1, 2, . . . ,

functionals on D such that J is T -W -subsequentially lower semicontinuous (T -W -sls)

and {Jn} is T -W -coercive and T -W -uniformly consistent for J . Suppose further that J
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has a unique global minimizer x̄ ∈ D and that each functional Jn also possesses on D a

global minimizer xn (not necessarily unique). Then xn → x̄.

Proof. The proof of this theorem proceeds exactly as the one of Theorem 3.10, by

changing the W -boundedness, W -sls, W -uniform consistency and (H3’) hypoteses by

T -W -boundedness, T -W -sls, T -W -uniform consistency and (I3’), respectively. ¥

Here again, the previous strong stability theorem yields a corresponding stability

result for minimizers of the functional (3) in the particular case in which J and Jn are

of Tikhonov-Phillips type. This result is given in the following corollary.

Corollary 3.13. Let X be a normed vector space, Y an inner product space, T, Tn ∈
L(X ,Y), n = 1, 2, · · ·, y ∈ Y, α > 0, D a subset of X , W : D → R a functional satisfying

hypotheses (H1) of Theorem 2.5 and (I2’) and (I3’) of Remark 2.11, J, Jn, n = 1, 2, ...,

functionals on D defined as follows:

J(x)
.
= ‖Tx− y‖2 + αW (x), (19)

Jn(x)
.
= ‖Tnx− yn‖2 + αnW (x), (20)

such that as n → ∞, αn → α, yn → y and Tnx → Tx uniformly on W -bounded sets

(i.e. {Tn} is W -uniformly consistent for T ). Suppose further that J has a unique global

minimizer x̄. If xn is a global minimizer of Jn then xn → x̄.

Proof. We will show that J and {Jn} satisfy the hypotheses of Theorem 3.12. For

that it suffices to show that J is T -W -sls and that {Jn} is T -W coercive and T -

W -uniformly consistent for J . The fact that J is T -W -sls follows immediately from

(I2’), the boundedness of T and the continuity of the norm in X . The T -W -uniform

consistency of {Jn} for J follows exactly as in the proof of Corollary 3.4 by noting

that |Jn(x) − J(x)| ≤ | ‖Tnx − yn‖2 − ‖Tx − y‖2| + |(αn − α)| |W (x)| and using the

fact that T -W -bounded sets are also W -bounded and the hypothesis of the W -uniform

consistency of {Tn} for T . Finally, also the T -W -coercivity of {Jn} follows easily from

the W -uniform consistency of {Tn} for T . ¥

4. Particular cases

In this section we present several examples of penalizers W (·) for which some of the

results obtained in the previous section are valid and therefore, existence, uniqueness

and/or stability for the minimizers of the corresponding generalized Tikhonov-Phillips

functional JW,α(·) in (3) are obtained.

4.1. Total variation penalization

Bounded variation penalty methods have been studied by Rudin, Osher and Fatemi in

1992 ([16]) and Acar and Vogel in 1994 ([1]), among others. These methods have been

proved highly successful in certain image denoising problems where edge preserving
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is an important issue ([4], [5], [6], [8]). Let d ≥ 2, Ω ⊂ Rd a convex, bounded

set with Lipschitz continuous boundary, 1 ≤ p ≤ d
d−1

, X .
= Lp(Ω), D .

= BV (Ω),

where BV (Ω) denotes the space of functions of bounded variations on Ω. Recall that

BV (Ω) = {u ∈ L1(Ω) : J0(u) < ∞}, where J0(u)
.
= supv∈ν

∫
Ω
(−u div v) dx and ν .

={
v ∈ C1

0(Ω;Rd) : |v(x)| ≤ 1 ∀ x ∈ Ω
}

(for u ∈ C1(Ω) one has that J0(u) =
∫
Ω
|∇u| dx)

and for u ∈ BV (Ω) the BV norm of u is defined by ‖u‖
BV (Ω)

.
= ‖u‖

L1(Ω)
+ J0(u). Let W

be the functional defined on D by W (u)
.
= ‖u‖

BV (Ω)
.

We will show that W (·) satisfies the hypotheses (H1), (H2) and (H3) of Theorem

2.5. Clearly W (·) satisfies hypothesis (H1) with γ = 0. Hypothesis (H3) follows

immediately from the compact imbedding of BV (Ω) into Lp(Ω) for 1 ≤ p < d
d−1

and

from the weak compact imbedding for p = d
d−1

. These results are extensions of the

Rellich-Kondrachov Theorem and can be found for example in [2] and [3]. It only

remains prove that W (·) satisfies hypothesis (H2). For that, let {un} ⊂ D be a W -

bounded sequence such that un
w−Lp−→ u ∈ D. Then, un

w−L1−→ u (since p ≥ 1). From the

weak lower semicontinuity of the ‖·‖L1(Ω) norm and of the functional J0(·) in L1(Ω) (see

[1]), it follows that

‖u‖L1(Ω) ≤ lim inf
n→∞

‖un‖L1(Ω) and J0(u) ≤ lim inf
n→∞

J0(un). (21)

Then,

W (u) = ‖u‖
BV (Ω)

= ‖u‖L1(Ω) + J0(u)

≤ lim inf
n→∞

‖un‖L1(Ω) + lim inf
n→∞

J0(un) (by (21))

≤ lim inf
n→∞

(
‖un‖L1(Ω) + J0(un)

)

= lim inf
n→∞

‖un‖BV (Ω)

= lim inf
n→∞

W (un),

which proves (H2). Hence W (·) satisfies the hypotheses of Theorem 2.5 and therefore

for any α > 0, T ∈ L(X ,Y), (Y a normed space) the functional

J‖·‖BV , α(u)
.
= ‖Tu− v‖2 + α‖u‖BV (Ω) (22)

has a global minimizer on BV (Ω). If T is injective then such a global minimizer is

unique. If T is not injective uniqueness cannot be guaranteed since the ‖ · ‖BV -norm

is not strictly convex. Also, if p < d
d−1

and J‖·‖BV , α(·) has a unique global minimizer,

then the problem of finding such a minimizer is strongly stable under perturbations in

the model (T ), in the data (y) and in the regularization parameter (α). This follows

immediately from the fact that (H2) is stronger than (H2’), the relative compactness of

BV-bounded sets in Lp(Ω) for p < d
d−1

(see [10]) and Corollary 3.11. For p = d
d−1

and

d ≥ 2 the problem is weakly stable, by virtue of Corollary 3.4.

4.2. Penalization with powers of semi-norms associated to closed operators

Theorem 4.1. Let X , Z be reflexive Banach spaces, Y a normed space, T ∈ L(X ,Y)

and L : D(L) ⊂ X → Z a closed linear operator such that the range of L, R(L),
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is weakly closed. Assume further that T and L are complemented, i.e. there exists a

constant k > 0 such that ‖Tx‖2 + ‖Lx‖2 ≥ k ‖x‖2 , ∀ x ∈ D(L). Then, for any q > 1,

α > 0 and y ∈ Y the functional

JL, q, α(x)
.
= ‖Tx− y‖2 + α‖Lx‖q, x ∈ D(L), (23)

has a unique global minimizer.

Proof. Let q > 1, D .
= D(L) and WL,q : D −→ R+

0 defined by WL,q(x)
.
= ‖Lx‖q. We will

show that T and WL,q satisfy the hypotheses (H1), (H2) and (I3). Hypothesis (H1) is

trivially satisfied since WL,q(x) ≥ 0 ∀ x ∈ D. To prove that (H2) holds, let {xn} ⊂ D
be a WL,q-bounded sequence such that xn

w→ x ∈ D. Then there exists a constant

c < ∞ such that ‖Lxn‖ ≤ c ∀ n ∈ N. Since the Banach space Z is reflexive, there exist

z ∈ Z and {xnj
} ⊂ {xn} such that Lxnj

w→ z. Since R(L) is weakly closed z ∈ R(L).

Now, the operator L†, the Moore-Penrose generalized inverse of L, is continuous (since

R(L) is closed), and therefore PN (L)⊥xnj
= L†Lxnj

w−→ L†z (where PN (L)⊥ is the

orthogonal projection of X onto N (L)⊥). Since xnj
= PN (L)⊥xnj

+ PN (L)xnj
it follows

that PN (L)xnj

w−→ x−L†z and therefore x−L†z ∈ N (L) (since N (L) is weakly closed, L

being closed). Hence 0 = L(x−L†z) = Lx−LL†z = Lx−PR(L)z = Lx−z. Thus z = Lx

and WL,q(x) = ‖Lx‖q = ‖z‖q ≤ lim infj→∞ ‖Lxnj
‖q = lim infj→∞ WL,q(xnj

), where the

inequality follows from the fact that Lxnj

w−→ z and the weak lower semicontinuity of

the norm in Z. This proves (H2).

To prove that (I3) holds, let {xn} ⊂ D be a T -WL,q-bounded sequence. By the

complementation condition it follows that {xn} is bounded in X and by the reflexivity

of X there must exist a subsequence {xnj
} ⊂ {xn} and x ∈ X such that xnj

w−→ x. It

only remains to be proved that x ∈ D = D(L). For that observe that since {xnj
} is a

WL,q-bounded sequence such that xnj

w−→ x, following the same steps as in the proof

of (H2) above, we obtain that there exists z ∈ R(L) such that x− L†z ∈ N (L). Since

L†z ∈ N (L)⊥ ⊂ D(L) it then follows that x ∈ D(L). This finally proves that (I3) holds.

Now, since hypothesis (H2) implies hypothesis (I2) (see Remark 2.10), Theorem

2.9 now implies that for any α > 0, y ∈ Y , the functional JL, q, α(x) defined by (23), has

a global minimizer on D(L). Since q > 1, from the complementation condition it follows

easily that JL, q, α is strictly convex and therefore such a global minimizer is unique. ¥

It is appropriate point out here that the above hypotheses on L are satisfied by

most differential operators and that the complementation condition holds, for instance,

whenever dimN (L) < ∞ and N (T )∩N (L) = {0}. Also, the previous theorem provides

existence for any q > 0. However uniqueness can only be guaranteed for q > 1 and, if

T is injective, also for q = 1.

The next Lemma shows that the problem of finding the global minimum of (23) is

weakly stable under perturbations on y, α and T .
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Lemma 4.2. Let X , Y , Z, T, L, D as in Theorem 4.1, q > 1, y, yn ∈ Y, α, αn ≥ 0,

Tn ∈ L(X ,Y), n = 1, 2, . . ., and JL,q,α, Jn, n = 1, 2, ..., functionals on D defined by

JL, q, α(x)
.
= ‖Tx− y‖2 + α ‖Lx‖q , (24)

Jn(x)
.
= ‖Tnx− yn‖2 + αn ‖Lx‖q . (25)

Assume that αn → α, yn → y as n → ∞ and that Tnx → Tx uniformly for x in L-

bounded sets (i.e. {Tn} is L-uniformly consistent for T ). Let x̄ be the unique minimizer

of JL, q, α and xn a global minimizer of Jn. Then xn
w→ x̄.

Proof. Let WL,q : D −→ R+
0 defined by WL,q(x)

.
= ‖Lx‖q. In Theorem 4.1 we proved

that T and WL,q satisfy hypotheses (H1), (I2) and (I3). Since by hypothesis αn → α,

yn → y and {Tn} is WL,q-uniformly consistent for T , the Lemma follows immediately

from Corollary 3.9. ¥

From the point of view of applications of the Tikhonov-Phillips methods, the weak

stability result established by the previous Lemma, although important, could render

insufficient. A strong stability result, at least on the data y is highly desired. In the next

Lemma we show that such a result can be obtain by imposing an additional hypothesis

to the operator L.

Lemma 4.3. Let X , Z, Y , T, Tn L, D, q, WL,q, y, yn, α, αn, JL,q,α, x̄, xn and Jn, n =

1, 2, ... as in Lemma 4.2. Assume further that T -L-bounded sets are compact in X . Then

xn → x̄.

Proof. In Theorem 4.1 we proved that T and WL,q satisfy hypotheses (H1) and (I2).

Since hypothesis (I2) implies hypothesis (I2’) and the compactness of T -L-bounded sets

implies (I3)’, the lemma then follows from Corollary 3.13. ¥

Remark 4.4. If q = 2, under the same hypotheses of Lemma 4.2 one can get continuity

of the solutions of (24) with respect to α and y. This can be easily verified from the fact

that the unique global minimizer of (24) is given by x̄ = (αL∗L + T ∗T )−1T ∗y. Thus, if

xn is the minimizer of (25) with Tn = T ∀n, then one has that

x̄−xn = (α−αn) (αL∗L + T ∗T )−1 L∗L xn+(αL∗L + T ∗T )−1 T ∗(y−yn).(26)

Suppose now that αn → α and yn → y. Then by Lemma 4.2 xn
w→ x̄ and

therefore {xn} is bounded. Also, since ‖Tx‖2 + ‖Lx‖2 ≥ k ‖x‖2 it follows that the

operators (αL∗L + T ∗T )−1 L∗L and (αL∗L + T ∗T )−1 T ∗ are both bounded. In fact

(αL∗L + T ∗T )−1 L∗L ≤ α−1I and (αL∗L + T ∗T )−1 ≤ 1
k min(α,1)

. Hence, it follows from

(26) that xn → x̄.
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4.3. Penalization by linear combination of powers of semi-norms associated to closed

operators

We study here the case of generalized Tikhonov-Phillips regularization methods for

which the functional W (·) in (3) is of the form W (x)
.
=

∑N
i=1 αi‖Lix‖qi , where the Li’s

are closed operators. We start with the main existence and uniqueness result.

Theorem 4.5. Let X , Z1, Z2, . . . ,ZN be reflexive Banach spaces, Y a normed space,

T ∈ L(X ,Y), D a subspace of X , Li : D −→ Zi, i = 1, 2, ..., N, closed linear operators

with R(Li) weakly closed for every 1 ≤ i ≤ N and such that T, L1, L2, . . . , LN are

complemented, i.e. there exists a constant k > 0 such that ‖Tx‖2 +
∑N

i=1 ‖Lix‖2 ≥
k‖x‖2, ∀ x ∈ D. Then, for any y ∈ Y, α1, α2, . . . , αN ∈ R+ and q1, q2, . . . , qN ∈ R,

qi > 1 ∀ i = 1, 2, . . . , N , the functional

J(x)
.
= ‖Tx− y‖2 +

N∑
i=1

αi ‖Lix‖qi , (27)

has a unique global minimizer.

Proof. Let y ∈ Y , αi > 0, qi > 1, i = 1, 2, . . . , N and define ~α
.
= (α1, α2, . . . , αN)T , ~q

.
=

(q1, q2, . . . , qN)T , the normed space Z .
=

⊗N
i=1Zi, ~L : X → Z as ~Lx

.
=

(L1x, L2x, . . . , LNx)T , and the functional W~L,~q,~α : D → R+
0 by W~L,~q,~α(x) =∑N

i=1 αi ‖Lix‖qi , so that J(x) = ‖Tx − y‖2 + W~L,~q,~α(x). We will prove that T and

W~L,~q,~α satisfy the hypotheses (H1), (H2) and (I3). In fact, (H1) is trivial and for (H2),

let {xn} ⊂ D be a W~L,~q,~α-bounded sequence such that xn
w→ x ∈ D. Then for every

i = 1, 2, . . . , N , the sequence {Lixn}∞n=1 is bounded in Zi and since Zi is reflexive there

exist a subsequence {xnk
} and zi ∈ Zi such that Lixnk

w→ zi as k → ∞. Since R(Li)

is weakly closed, zi ∈ R(Li). By taken subsequences, we may assume that such a

subsequence is the same for all i, i.e. Lixnk

w→ zi as k →∞ for every i = 1, 2, . . . , N .

Now, sinceR(Li) is closed, L†i is bounded and therefore L†iLixnk

w→ L†izi, as k →∞,

for all i = 1, 2, . . . , N . Since L†iLi = PN (Li)⊥ is the orthogonal projection of X onto

N (Li)
⊥, writing xnk

= PN (Li)⊥xnk
+ PN (Li)xnk

, it follows that PN (Li)xnk

w→ x− L†izi as

k →∞ and therefore x− L†izi ∈ N (Li) (being N (Li) closed, since Li is closed). Hence

for all i = 1, 2, . . . , N , it follows that 0 = Li(x−L†izi) = Lix−PR(Li)
zi = Lix−zi (where

the last equality follows since zi ∈ R(Li) ). Thus, zi = Lix ∀ i = 1, 2, . . . , N . Then

‖Lix‖qi = ‖zi‖qi ≤ lim inf
k→∞

‖Lixnk
‖qi ,

(where the last inequality follows from the fact that Lixnk

w→ zi as k →∞ and the weak

lower semicontinuity of the norm in Zi), and therefore

W~L,~q,~α(x) =
N∑

i=1

αi‖Lix‖qi ≤
N∑

i=1

αi lim inf
k→∞

‖Lixnk
‖qi

≤ lim inf
k→∞

N∑
i=1

αi‖Lixnk
‖qi = lim inf

k→∞
W~L,~q,~α(xnk

).
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Thus (H2) holds. That (I3) also holds follows from the complementation condition and

the reflexivity of X , following the same steps as in Theorem 4.1. Since (H2) implies (I2),

it now follows from Theorem 2.9 that the functional J(x) in (27) has a global minimizer

on D. Moreover, since qi > 1 for all i, it follows from the complementation condition

that J(·) is strictly convex and therefore such a minimizer is unique. ¥

Under the same hypotheses of Theorem 4.5 one has that the solution of (27) is

weakly stable under perturbations in the data y, in the parameters αi and in the model

operator T . More precisely we have the following result.

Lemma 4.6. Let all the hypotheses of Theorem 4.5 hold. Let also y, yn ∈ Y,

Tn ∈ L(X ,Y), n = 1, 2, . . ., such that yn → y, {Tn} is ~L-uniformly consistent for

T and for each i = 1, 2, . . . , N , let {αn
i }∞n=1 ⊂ R+ such that αn

i → αi as n → ∞. If xn

is a global minimizer of the functional

Jn(x)
.
= ‖Tnx− yn‖2 +

N∑
i=1

αn
i ‖Lix‖qi , (28)

then xn
w→ x̄, where x̄ is the unique minimizer of (27).

Proof. Let W
.
= W~L,~q,~α as in Theorem 4.5. From the hypotheses it follows easily that

{Jn} is T -W -coercive and W -uniformly consistent for J .

Let xn be the unique minimizer of Jn. Then Jn(xn) ≤ Jn(x̄), ∀n. Therefore

lim sup
n→∞

Jn(xn) ≤ lim sup
n→∞

Jn(x̄) = J(x̄) < ∞, (29)

where the equality follows from the W -uniform consistency of {Jn} for J . But since

{Jn} is T -W -coercive it then follows that {xn} is T -W -bounded. We claim that xn
w→ x̄.

In fact, suppose that is not the case. Then, there exists a subsequence {xnj
} ⊂ {xn}

such that no subsequence of {xnj
} converges weakly to x̄. But since {xnj

} is T -W -

bounded and X is reflexive, there exist x∗ 6= x̄ and {xnjk
} ⊂ {xnj

} such that xnjk

w→ x∗.
Following the same steps as in Theorem 4.5 we obtain that there exists a subsequence

{xnjk`
} ⊂ {xnjk

} and zi ∈ Zi, i = 1, 2, . . . , N , such that Lixnjk`

w→ zi = Lix
∗ as ` →∞,

∀ i = 1, 2, . . . , N , and

W (x∗) ≤ lim inf
`→∞

W
(
xnjk`

)
. (30)

Also, since {xnjk`
} is W -bounded and {Jn} is W -uniformly consistent for J , it follows

that

lim
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
= 0. (31)

Hence

J(x∗) = ‖Tx∗ − y‖2 + W (x∗)

≤ lim inf
`→∞

‖Txnjk`
− y‖2 + lim inf

`→∞
W (xnjk`

) (by (30) )

≤ lim inf
`→∞

(
‖Txnjk`

− y‖2 + W (xnjk`
)
)
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= lim inf
`→∞

J
(
xnjk`

)

≤ lim sup
`→∞

J
(
xnjk`

)

= lim sup
`→∞

[(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ Jnjk`

(
xnjk`

)]

≤ lim sup
`→∞

(
J

(
xnjk`

)
− Jnjk`

(
xnjk`

))
+ lim sup

`→∞
Jnjk`

(
xnjk`

)

= lim sup
`→∞

Jnjk`

(
xnjk`

)
(by (31) )

≤ J(x̄) (by (29) since {xnjk`
} ⊂ {xn} )

Since x̄ is the unique minimizer of J it would then follow that x∗ = x̄, contradicting our

previous result that x∗ 6= x̄. This contradiction came from the assumption that xn did

not converge weakly to x̄. Hence xn
w→ x̄. ¥

Lemma 4.7. Under the same hypotheses of Lemma 4.6, if T -~L-bounded sets are compact

in D, then strong stability holds, i.e., xn → x̄.

Proof. Let xn denote the global minimizer of Jn and W = W~L,~q,~α. In Lemma 4.6 it

was proved that the sequence {xn} is T -W -bounded. Suppose that xn 9 x̄. Then

there exists a subsequence {xnj
} ⊂ {xn} such that no subsequence of {xnj

} converges

to x̄. But since {xnj
} is T -W -bounded, now by compactness hypothesis there must exist

x∗ ∈ D, x∗ 6= x̄, and a subsequence {xnjk
} ⊂ {xnj

} such that xnjk
→ x∗ as k → ∞.

Using the W -uniform consistency of {Jn} for J and following similar steps as in Lemma

4.6 one obtains that J(x∗) ≤ J(x̄). Since x̄ is the unique minimizer of J it would then

follow that x∗ = x̄, contradicting our previous result that x∗ 6= x̄. Therefore we must

have that xn → x̄. ¥

Remark 4.8. Here again, for the case qi = 2 ∀ i, strong continuity of the solution

of the functional J(x) in (27) with respect to the data y and the parameters αi follow

without any further hypotheses than those in Lemma 4.6. This result follows easily

from the fact that in such a case the unique global minimizer of (27) is given by

x̄ =
(
T ∗T +

∑N
i=1 αiL

∗
i Li

)−1

T ∗y. Thus, if xn is the minimizer of (28) with Tn = T ∀n,

then one has that

x̄− xn =

(
T ∗T +

N∑
i=1

αiL
∗
i Li

)−1 N∑
i=1

(αn
i − αi)L

∗
i Li xn

+

(
T ∗T +

N∑
i=1

αiL
∗
i Li

)−1

T ∗(y − yn). (32)

Now, from the complementation condition ‖Tx‖2 +
∑N

i=1 ‖Lix‖2 ≥ k‖x‖2,∀x ∈ D, it

follows easily that

0 ≤
(

T ∗T +
N∑

i=1

αiL
∗
i Li

)−1

≤ 1

k min (1, min1≤i≤N αi)
, (33)
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and also ∥∥∥∥∥∥

(
T ∗T +

N∑
i=1

αiL
∗
i Li

)−1 N∑
i=1

(αn
i − αi)L

∗
i Li x

∥∥∥∥∥∥

≤ max1≤i≤N |αn
i − αi|

min1≤i≤N αi

‖x‖, ∀x ∈ D. (34)

Using (34) and (33) in (32) we obtain that

‖x̄−xn‖ ≤ max1≤i≤N |αn
i − αi|

min1≤i≤N αi

‖xn‖+ ‖T ∗‖
k min (1, min1≤i≤N αi)

‖y−yn‖.(35)

Now since by Lemma 4.6 xn
w→ x̄, it follows that {xn} is bounded. Since yn → y and

αn
i → αi ∀ i = 1, 2, . . . , N , as n →∞, it finally follows from (35) that xn → x.

5. Applications to Image Restoration

The purpose of this section is to present an application to a simple image restoration

problem. The main objective is to show how the choice of the penalizer in a generalized

Tikhonov-Phillips functional can affect the reconstructed image.

The basic mathematical model for image blurring is given by the following Fredholm

integral equation

K f(x, y)
.
=

∫ ∫

Ω

k(x, y, x′, y′)f(x′, y′)dx′dy′ = g(x, y), (36)

where Ω ⊂ R2 is a bounded domain, f ∈ X .
= L2(Ω) represents the original image and

k is the so called “point spread function” (PSF). For the examples shown below we used

a PSF of “atmospheric turbulence” type

k(x, y, x′, y′) =
κ

π
exp

(
−κ ‖(x, y)− (x′, y′)‖2

)
, (37)

with κ = 6. It is well known that with this PSF the operator K in (36) is compact

with infinite dimensional range and therefore K†, the Moore-Penrose inverse of K, is

unbounded.

Generalized Tikhonov-Phillips methods with different penalizers where used to

obtain regularized solutions of the problem

K f = g. (38)

The data g was contaminated with a 1% zero mean Gaussian noise (i.e. standard

deviation of the order of 1% of ‖g‖∞). Minimizers of functionals of the form

Jα(f) = ‖Kf − g̃‖2 + α W (f) (39)

were found for different penalizers W (f), where g̃ represents the noisy version of g. In

all cases the value of the regularization parameter α was approximated by using the

L-curve method ([9], [12], [13]).

Figures 1(a) and 1(b) show the original image (unknown in real life problems)

and the blurred noisy image which constitutes the data for the inverse problems,
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respectively. Figures 1(c) and 1(d) show the reconstructions obtained with the classical

Tikhonov-Phillips methods of order zero and one, corresponding to W (f) = ‖f‖2 and

W (f) = ‖∇f‖2, respectively.

(a) Original image (unknown). (b) Blurred noisy image (data).

(c) Tikhonov-Phillips of order
zero, W (f) = ‖f‖2.

(d) Tikhonov-Phillips of order
one, W (f) = ‖∇f‖2.

Figure 1. Original image (a), blurred noisy image (b) and regularized solutions
obtained with the classical Tikhonov-Phillips methods of order zero (c) and one (d).

Figures 2(b) and 2(c) show the reconstructions obtained with a structural

information penalizer of the form W (f) = ‖Lf‖2 where the operator L is constructed

as in [14], including the information of the curve γ depicted in Figure 2(a), where it is

expected that the original image have steep gradients. The operator L is constructed

so as to capture this structural prior information. The discretization of L is given by∫
Ω
‖A(x)∇f(x)‖2 dx with A(x) = I − (1 + c‖∇γ(x)‖2)

−1∇γ(x) (∇γ(x))T , where c is a

positive constant. In this way, if ‖∇γ(x)‖ is large, the functional W (f) penalizes only

very mildly all intensity changes occurring in the direction of ∇γ(x) (see [14] for more

details).
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(a) The curve γ providing the
structural information.

(b) Structural penalizer W (f) =
‖Lf‖, c = 5.

(c) Structural penalizer W (f) =
‖Lf‖, c = 20.

Figure 2. Structural information (a), reconstructed image with structural information
penalizer and c = 5 (b) and c = 20 (c)

Figures 3(a) and 3(b) correspond to images reconstructed with hybrid Tikhonov-

structural penalizers W (f) = 4
5
‖f‖2 + 1

5
‖Lf‖2, with c = 5 and c = 20, respectively.

A comparison of the images obtained with the different methods clearly show that

the choice of the penalizer in Tikhonov-Phillips method can greatly affect the obtained

approximated solution. In this particular case we observe how the classical order-zero

method tends to smooth out boundaries and edges and, while the order-one method does

a better job, the inclusion of the structural information through the operator L results

in a significant improvement. Although the main objective of this article is theoretical

in nature, providing sufficient conditions on the model operators and the penalizers

for the existence, uniqueness and stability of solutions of the corresponding generalized

Tikhonov-Phillips methods, the previous applications to image restoration were included

to better emphasize the importance of the adequate choice of the penalizer.
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(a) (b)

Figure 3. Recostructed images with hybrid penalizers: W (f) = 4
5‖f‖2 + 1

5‖Lf‖2;
c = 5 (a) and c = 20 (b)

6. Conclusions

In this article sufficient conditions on the penalizers in generalized Tikhonov-Phillips

functionals guaranteeing existence, uniqueness and stability of the minimizers where

found. The particular cases in which the penalizers are given by the bounded variation

norm, by powers of seminorms and by linear combinations of powers of seminorms

associated to closed operators, were studied. Several examples were presented and a

few results on image restoration were shown to illustrate how the choice of the penalizer

can greatly affect the regularized solutions.
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